242 research outputs found

    Towards a new and integrated approach to submarine canyon research. Introduction

    Get PDF
    Submarine canyons, steep-walled valleys that cut across virtually every continental margin around the world (Harris and Whiteway, 2011), are considered major sediment transport pathways between continental shelves and the deep sea (e.g., Shepard, 1963 and Puig et al., 2014). Owing to their steep topography and high terrain heterogeneity, in addition to their unique current patterns and episodic down-canyon flushing events, which result in locally increased nutrient concentrations and food availability, submarine canyons are often considered as biodiversity hotspots (e.g., Tyler et al., 2009 and De Leo et al., 2010). On the other hand, considerable differences have been observed between individual canyon systems, and between different faunal groups in terms of their response to the typical canyon environment (e.g., Cunha et al., 2011, Ingels et al., 2011 and Schlacher et al., 2007). Unfortunately, in addition to transporting sediment, submarine canyons also tend to funnel our human litter and pollutants into the deep sea, extending the anthropogenic impact on the oceans far beyond our shores (e.g., de de Jesus Mendes et al., 2011, Mordecai et al., 2011 and Schlining et al., 2013)

    Partly standing internal tides in a dendritic submarine canyon observed by an ocean glider

    Get PDF
    An autonomous ocean glider is used to make the first direct measurements of internal tides within Whittard Canyon, a large, dendritic submarine canyon system that incises the Celtic Sea continental slope and a site of high benthic biodiversity. This is the first time a glider has been used for targeted observations of internal tides in a submarine canyon. Vertical isopycnal displacement observations at different stations fit a one-dimensional model of partly standing semidiurnal internal tides – comprised of a major, incident wave propagating up the canyon limbs and a minor wave reflected back down-canyon by steep, supercritical bathymetry near the canyon heads. The up-canyon internal tide energy flux in the primary study limb decreases from 9.2 to 2.0 kW m−1 over 28 km (a dissipation rate of View the MathML source), comparable to elevated energy fluxes and internal tide driven mixing measured in other canyon systems. Within Whittard Canyon, enhanced mixing is inferred from collapsed temperature-salinity curves and weakened dissolved oxygen concentration gradients near the canyon heads. It has previously been hypothesised that internal tides impact benthic fauna through elevated near-bottom current velocities and particle resuspension. In support of this, we infer order 20 cm s−1 near-bottom current velocities in the canyon and observe high concentrations of suspended particulate matter. The glider observations are also used to estimate a 1 °C temperature range and 12 μmol kg−1 dissolved oxygen concentration range, experienced twice a day by organisms on the canyon walls, due to the presence of internal tides. This study highlights how a well-designed glider mission, incorporating a series of tide-resolving stations at key locations, can be used to understand internal tide dynamics in a region of complex topography, a sampling strategy that is applicable to continental shelves and slopes worldwide

    Landscape mapping at sub-Antarctic South Georgia provides a protocol for underpinning large-scale marine protected areas

    Get PDF
    Global biodiversity is in decline, with the marine environment experiencing significant and increasing anthropogenic pressures. In response marine protected areas (MPAs) have increasingly been adopted as the flagship approach to marine conservation, many covering enormous areas. At present, however, the lack of biological sampling makes prioritising which regions of the ocean to protect, especially over large spatial scales, particularly problematic. Here we present an interdisciplinary approach to marine landscape mapping at the sub-Antarctic island of South Georgia as an effective protocol for underpinning large-scale (105–106  km2) MPA designations. We have developed a new high-resolution (100 m) digital elevation model (DEM) of the region and integrated this DEM with bathymetry-derived parameters, modelled oceanographic data, and satellite primary productivity data. These interdisciplinary datasets were used to apply an objective statistical approach to hierarchically partition and map the benthic environment into physical habitats types. We assess the potential application of physical habitat classifications as proxies for biological structuring and the application of the landscape mapping for informing on marine spatial plannin

    RRS James Cook cruise JC166-167, 19 June – 6 July 2018. CLASS – Climate-linked Atlantic System Science Haig Fras Marine Conservation Zone AUV habitat monitoring, Equipment trials and staff training

    Get PDF
    Expedition JC166-167 combined a number of science and technical objectives in order to deliver a comprehensive programme for the UK marine science sector. The expedition supported the NERC National Capability programme CLASS (Climate-Linked Atlantic Sector Science, grant no NE/R015953/1), which aims to increase our understanding of the Atlantic Ocean system, in order to support evidence-based ocean management. More specifically, JC166-167 was part of the Fixed Point Observations Underpinning Activity, where repeated observations and surveys of Marine Protected Areas (MPAs) and their surroundings provide insight into the development and recovery of benthic ecosystems following natural and/or anthropogenic impacts. The target location for JC166-167 was the Greater Haig Fras Marine Conservation Zone (MCZ), west of Cornwall, which was surveyed by NOC, using Autosub AUVs, in 2012 and 2015. The 2018 expedition continued that time series, and expanded the study by also looking at differences in benthic community observed between day and night. Haig Fras is the only rocky reef on the Celtic Shelf, and was protected in 2016. In parallel with these science objectives, JC166-167 included an extensive series of equipment trials, combined with training for staff members of the Marine Autonomous and Robotic Systems group at NOC. The robotic and autonomous systems tested included the Isis ROV, HyBIS vehicle, the Autosub6000 AUV, a deep glider, a wave glider, a C-worker 4 USV and a drone. Some of the trials were carried out in the shallow waters around Haig Fras, while others required greater depths, for which we visited the Whittard Canyon system along the Celtic Margin. Wherever possible, trials and training were carried out in a way that the resulting data would help address CLASS science objectives, including objectives related to the sustained observations in the Canyons MCZ

    On the ecological relevance of landscape mapping and its application in the spatial planning of very large marine protected areas

    Get PDF
    In recent years very large marine protected areas (VLMPAs) have become the dominant form of spatial protection in the marine environment. Whilst seen as a holistic and geopolitically achievable approach to conservation, there is currently a mismatch between the size of VLMPAs, and the data available to underpin their establishment and inform on their management. Habitat mapping has increasingly been adopted as a means of addressing paucity in biological data, through use of environmental proxies to estimate species and community distribution. Small-scale studies have demonstrated environmental-biological links in marine systems. Such links, however, are rarely demonstrated across larger spatial scales in the benthic environment. As such, the utility of habitat mapping as an effective approach to the ecosystem-based management of VLMPAs remains, thus far, largely undetermined. The aim of this study was to assess the ecological relevance of broadscale landscape mapping. Specifically we test the relationship between broad-scale marine landscapes and the structure of their benthic faunal communities. We focussed our work at the sub-Antarctic island of South Georgia, site of one of the largest MPAs in the world. We demonstrate a statistically significant relationship between environmentally derived landscape mapping clusters, and the composition of presence-only species data from the region. To demonstrate this relationship required specific re-sampling of historical species occurrence data to balance biological rarity, biological cosmopolitism, range-restricted sampling and fine-scale heterogeneity between sampling stations. The relationship reveals a distinct biological signature in the faunal composition of individual landscapes, attributing ecological relevance to South Georgia's environmentally derived marine landscape map. We argue therefore, that landscape mapping represents an effective framework for ensuring representative protection of habitats in management plans. Such scientific underpinning of marine spatial planning is critical in balancing the needs of multiple stakeholders whilst maximising conservation payoff

    Broadscale landscape mapping provides insight into the Commonwealth of Dominica and surrounding islands offshore environment

    Get PDF
    A lack of data hinders effective marine management strategies for developing island states. This is a particularly acute problem for the Commonwealth of Dominica. Here we use publicly available remote sensing and model data to map their relatively unstudied waters. Two study areas were selected; a smaller area focussing on the nearshore marine environment, and a larger area to capture broader spatial patterns and context. Three broadscale landscape maps were created, using geophysical and oceanographic data to classify the marine environment based on its abiotic characteristics. Principal component analysis (PCA) was performed on each area, followed by K-means clustering. The larger area PCA revealed three eigenvalues > 1, and one eigenvalue of 0.980. Therefore, two maps were created for this area, to assess the significance of including the fourth principal component (PC). We demonstrate that including too many PCs could lead to an increase in the confusion index of final output maps. Overall, the marine landscape maps were used to assess the spatial characteristics of the benthic environment and to identify priority areas for future high-resolution study. Through defining and analysing existing conditions and highlighting important natural areas in the Dominican waters, these study results can be incorporated into the Marine Spatial Planning process

    High-Resolution Vertical Habitat Mapping of a Deep-Sea Cliff offshore Greenland

    Get PDF
    Recent advances in deep-sea exploration with underwater vehicles have led to the discovery of vertical environments inhabited by a diverse sessile fauna. However, despite their ecological importance, vertical habitats remain poorly characterized by conventional downward-looking survey techniques. Here we present a high-resolution 3-dimensional habitat map of a vertical cliff hosting a suspension-feeding community at the flank of an underwater glacial trough in the Greenland waters of the Labrador Sea. Using a forward-looking set-up on a Remotely Operated Vehicle (ROV), a high-resolution multibeam echosounder was used to map out the topography of the deep-sea terrain, including, for the first time, the backscatter intensity. Navigational accuracy was improved through a combination of the USBL and the DVL navigation of the ROV. Multi-scale terrain descriptors were derived and assigned to the 3D point cloud of the terrain. Following an unsupervised habitat mapping approach, the application of a K-means clustering revealed four potential habitat types, driven by geomorphology, backscatter and fine-scale features. Using groundtruthing seabed images, the ecological significance of the four habitat clusters was assessed in order to evaluate the benefit of unsupervised habitat mapping for further fine-scale ecological studies of vertical environments. This study demonstrates the importance of a priori knowledge of the terrain around habitats that are rarely explored for ecological investigations. It also emphasizes the importance of remote characterization of habitat distribution for assessing the representativeness of benthic faunal studies often constrained by time-limited sampling activities. This case study further identifies current limitations (e.g., navigation accuracy, irregular terrain acquisition difficulties) that can potentially limit the use of deep-sea terrain models for fine-scale investigations

    Using 3D photogrammetry from ROV video to quantify cold-water coral reef structural complexity and investigate its influence on biodiversity and community assemblage

    Get PDF
    Fine-scale structural complexity created by reef-building coral in shallow-water environments is influential on biodiversity, species assemblage and functional trait expression. Cold-water coral reefs are also hotspots of biodiversity, often attributed to the hard surface and structural complexity provided by the coral. However, that complexity has seldom been quantified on a centimetric scale in cold-water coral reefs, unlike their shallow-water counterparts, and has therefore never been linked in a similar way to the reef inhabitant community. Structure from motion techniques which create high-resolution 3D models of habitats from sequences of photographs is being increasingly utilised, in tandem with 3D spatial analysis to create useful 3D metrics, such as rugosity. Here, we demonstrate the use of ROV video transect data for 3D reconstructions of cold-water coral reefs at depths of nearly 1000 m in the Explorer Canyon, a tributary of Whittard Canyon, NE Atlantic. We constructed 40 3D models of approximately 25-m-length video transects using Agisoft Photoscan software, resulting in sub-centimetre resolution reconstructions. Digital elevation models were utilised to derive rugosity metrics, and orthomosaics were used for coral coverage assessment. We found rugosity values comparable to shallow-water tropical coral reef rugosity. Reef and nearby non-reef communities differed in assemblage composition, which was driven by depth and rugosity. Species richness, epifauna abundance and fish abundance increased with structural complexity, being attributed to an increase in niches, food, shelter and alteration of physical water movement. Biodiversity plateaued at higher rugosity, illustrating the establishment of a specific reef community supported by more than 30% coral cover. The proportion of dead coral to live coral had limited influence on the community structure; instead, within-reef patterns were explained by depth and rugosity, though our results were confounded to a certain extent by multi-collinearity. Fine-scale structural complexity appeared to be integral to local-scale ecological patterns in cold-water coral reef communities

    Reconstruction of the formation history of the Darwin Mounds, N Rockall Trough: How the dynamics of a sandy contourite affected cold-water coral growth

    Get PDF
    Cold-water coral mounds, formed through a feed-back process of cold-water coral growth and sediment baffling, have been studied all along the NE Atlantic continental margin. However, major questions remain concerning their formation history, especially their initiation and early development in relation to the surrounding sediment dynamics. For the first time, two small mounds located in a sandy contourite have been cored from the top to mound base: here, the formation history of the Darwin Mounds, located in the Northern Rockall Trough was investigated and reconstructed from two piston cores using a multidisciplinary approach. This consisted of CT-scanning for quantifying coral density changes with depth, grain-size analysis to obtain the hydrodynamic trends and radiocarbon and U-series dating to place the results into a wider paleoceanographic context. The results show that the Darwin Mounds formed during the early Holocene (~ 10 ka BP) through sediment baffling, mainly by Lophelia pertusa. The initiation of both mounds shows a similar pattern of increased current velocities resulting in coarser sediment deposition and a relatively high coral density with a peak of 23 vol%. The mound growth was rapid between ~ 10–9.7 ka BP (up to 277 cm ka− 1 in one of the mounds), with further vibrant growth periods around ~ 8.8 ka BP, 6.5 ka BP and 3.4 ka BP. The demise of the mounds ca. ~ 3 ka BP was likely caused by an intensification in bottom current velocities causing a hostile environment for coral growth in the contourite setting. In a wider context, the development of the Darwin Mounds appears to have responded to the relative strength and position of the Subpolar Gyre, which affected food supply to the corals, sedimentation rates, current speeds and other water mass properties in the area
    • …
    corecore